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1. Introduction

Little Higgs models [1] offer an explanation to the little hierarchy between the Higgs mass

Mh assumed to be near the electroweak scale v = 246 GeV and the new physics (NP) scale f ,

whose natural value is expected to be ∼ 1TeV [2]. In contrast with supersymmetry, where

the large one-loop Standard Model (SM) contributions to the Higgs mass are cancelled by

the contributions from the corresponding supersymmetric partners with masses ∼ 1TeV

and spins differing by ±1/2 (see [3] and references therein), Little Higgs (LH) models

stabilize Mh by making the Higgs a pseudo-Goldstone boson of a broken global symmetry.

The cancellation is in this case between particles with the same spin belonging to the same

multiplets of this approximate symmetry. Which of these SM extensions, if any, is at work

will be hopefully established at the LHC [4, 5].
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Supersymmetry is linearly realized in the minimal supersymmetric SM (MSSM). This

and other simple supersymmetric extensions of the SM have other interesting phenomeno-

logical properties, like, for instance, the unification of gauge couplings at very high scales [6],

which is not the case for LH models. However, they have no built-in low energy mechanism

to explain the observed fermion mass hierarchy or flavour conservation. As a matter of

fact, it can be argued that supergravity is phenomenologically relevant [3, 7] because it can

provide the necessary initial conditions to explain the precise fine-tuning required among

the many new parameters of the MSSM, which otherwise would result in too large flavour

changing processes [8]. This has been historically the problem of many SM extensions [9].

If the NP is near the TeV scale, it faces in general the problem of naturally explaining why

it is aligned with the SM Yukawa interactions, as experimentally required. Although the

SM can not explain the large hierarchy between fermion masses, which by the way is several

orders of magnitude more demanding than the little hierarchy, it naturally accommodates

the absence of flavour changing neutral currents (FCNC) [10]. LH models are not designed

to solve the flavour puzzle either, and one must expect stringent constraints on the new

parameters involving the heavy sector. The study of FCNC processes in Littlest Higgs

models has been addressed in the literature [11]. In this paper we revise the calculation

of the decay rates of the lepton flavour violating (LFV) processes µ → eγ [12, 13] and

µ → eeē [13] in the Littlest Higgs model with T-parity (LHT) [14], obtaining an ultravio-

let finite result also for the latter.1 Indeed, when all Goldstone boson interactions of the

new leptons are taken into account, the one-loop contributions to the amplitudes are well-

defined [16, 17], scaling approximately in the two family case like (v2/f2) sin 2θ δ, where θ

is a measure of the misalignment between the heavy and SM lepton Yukawa couplings and

δ is the corresponding heavy lepton mass splitting. As a consequence, the present experi-

mental limits require fine tuning the Yukawa couplings of the new heavy leptons up to 10%,

aligning them with their SM counterparts, or making the heavy masses quasi-degenerate.

One might also rise the NP scale degrading the motivation of the LH scenario itself. In the

general case with three families the new contributions must be tuned to a similar precision

but the parameter dependence is more involved. The calculation also applies to τ decays,

but the corresponding limits are not restrictive at present. Moreover, it can be easily ex-

tended to µ− e conversion in nuclei [18]. A complete phenomenological analysis comparing

as well different LH models will be presented elsewhere.

In LH models the Higgs is a pseudo-Goldstone boson. Thus, Mh is naturally small as

long as the new scale f is relatively low, because one expects that cancellations are only pro-

tected to one loop and for the dominant contributions. Hence, 4πf can not be much larger

than 10 TeV if we do not wish to invoke some fine tuning again. However, as the model

introduces heavy particles the new one-loop contributions to electroweak observables may

require rising f significantly above 1TeV in the absence of model dependent cancellations,

in order to be consistent with present electroweak precision data (EWPD) [19]. The LHT

is an economical realization of the LH scenario with the further virtue of keeping the new

1See also [15] which appeared when we were preparing this manuscript. There the cancellation of

ultraviolet divergences in the LHT model is also shown, flavour violation in the quark sector is explored

and the phenomenology of K → πνν̄ is analyzed.
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contributions to EWPD small. It incorporates a discrete symmetry under which the new

particles are odd and the SM ones even. Then all vertices must have an even number of new

particles, if any. Similarly to the R symmetry in supersymmetric models, the T symmetry

allows us to weaken the experimental limit on the LH effective scale below the TeV [20].

This symmetry also makes stable the lightest T-odd particle, offering, like R-parity does

in the supersymmetric case, an alternative candidate for cold dark matter [21].

Nevertheless, as already emphasized these models are not a priori designed to deal

with the flavour problem. Therefore, it is important to investigate the constraints on the

model parameters implied by the stringent experimental limits on FCNC. We follow an

operational approach and calculate the leading contributions to µ → eγ and µ → eeē

in the LHT, recovering previous results for the former [12, 13] but an ultraviolet finite

result for the latter. We focus on these processes because the lepton sector is free from

large strong corrections, and the experimental limits are quite demanding. In section 2

we review the LHT model to introduce the notation and the Feynman rules needed. The

one-loop amplitudes of the LFV processes µ→ eγ and µ→ eeē are discussed in section 3.

The calculation is straightforward but cumbersome, requiring a careful bookkeeping of the

different terms. In section 4 we present the numerical results discussing the dependence on

the different parameters of the model. Finally, section 5 is devoted to conclusions, where

we also briefly comment on τ decays.

2. The littlest Higgs model with T-parity

2.1 The Lagrangian

The LHT is a non-linear σ model based on the coset space SU(5)/SO(5), with the SU(5)

global symmetry broken by the vacuum expectation value (VEV) of a 5×5 symmetric ten-

sor,

Σ0 =




02×2 0 12×2

0 1 0

12×2 0 02×2


 . (2.1)

The 10 unbroken generators T a, which leave invariant Σ0 and then satisfy

T aΣ0 + Σ0(T
a)T = 0, expand the SO(5) algebra; whereas the 14 broken generators Xa,

which fulfillXaΣ0−Σ0(X
a)T = 0, expand the Goldstone fields Π = πaXa parameterized as

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (2.2)

where f is the effective NP scale. Only the [SU(2)×U(1)]1×[SU(2)×U(1)]2 subgroup of

the SU(5) global symmetry is gauged. It is generated by

Qa
1 =

1

2



σa 0 0

0 0 0

0 0 02×2


 , Y1 =

1

10
diag(3, 3,−2,−2,−2), (2.3)

Qa
2 =

1

2




02×2 0 0

0 0 0

0 0 −σa∗


 , Y2 =

1

10
diag(2, 2, 2,−3,−3), (2.4)
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with σa the three Pauli matrices. The VEV in eq. (2.1) breaks this gauge group

down to the SM gauge group SU(2)L×U(1)Y , generated by the combinations

{Qa
1 + Qa

2, Y1 + Y2} ⊂ {T a}. The orthogonal combinations are a subset of the

broken generators, {Qa
1 −Qa

2, Y1 − Y2} ⊂ {Xa}. Thus, the Goldstone fields

Π =




−ω
0

2
− η√

20
−ω

+

√
2

−i
π+

√
2

−iΦ++ −i
Φ+

√
2

−ω
−

√
2

ω0

2
− η√

20

v + h+ iπ0

2
−i

Φ+

√
2

−iΦ0 + ΦP

√
2

i
π−√

2

v + h− iπ0

2

√
4

5
η −i

π+

√
2

v + h+ iπ0

2

iΦ−− i
Φ−

√
2

i
π−√

2
−ω

0

2
− η√

20
−ω

−

√
2

i
Φ−

√
2

iΦ0 + ΦP

√
2

v + h− iπ0

2
−ω

+

√
2

ω0

2
− η√

20




(2.5)

decompose into the SM Higgs doublet (−iπ+/
√

2, (v + h + iπ0)/2)T , a complex SU(2)L
triplet Φ, and the longitudinal modes of the heavy gauge fields ω±, ω0 and η.2

As emphasized in the previous section, we can make the new contributions to elec-

troweak precision observables small enough introducing a T-parity under which the SM

particles are even and the new particles are odd. An obvious choice for the action of such

T-parity on the gauge fields Gi is the exchange of the gauge subgroups [SU(2)×U(1)]1 and

[SU(2)×U(1)]2,

G1
T←→ G2. (2.6)

Then, T invariance requires that the gauge couplings associated to both factors are equal.

This leaves the following gauge Lagrangian unchanged,

LG =
2∑

j=1

[
−1

2
Tr
(
W̃jµνW̃

µν
j

)
− 1

4
BjµνB

µν
j

]
, (2.7)

where

W̃jµ = W a
jµQ

a
j , W̃jµν = ∂µW̃jν − ∂νW̃jµ − ig

[
W̃jµ, W̃jν

]
, Bjµν = ∂µBjν − ∂νBjµ.(2.8)

(Summation over index a, which runs on the corresponding SU(2) generators, is always

assumed when repeated.) The T-even combinations multiplying the unbroken gauge gen-

erators correspond to the SM gauge bosons,

W± =
1

2
[(W 1

1 +W 1
2 )∓ i(W 2

1 +W 2
2 )], W 3 =

W 3
1 +W 3

2√
2

, B =
B1 +B2√

2
, (2.9)

whereas the T-odd combinations

W±
H =

1

2
[(W 1

1 −W 1
2 )∓ i(W 2

1 −W 2
2 )], W 3

H =
W 3

1 −W 3
2√

2
, BH =

B1 −B2√
2

, (2.10)

2In the following we use for the SM fields and couplings the conventions in ref. [22]. In particular,

φ+ = −iπ+, φ0 = π0.
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expand the heavy gauge sector.

In order to ensure that the SM Higgs doublet is T-even and the remaining Goldstone

fields are T-odd, the T action on the scalar fields is defined as follows,

Π
T−→ −ΩΠΩ, Ω = diag(−1,−1, 1,−1,−1), (2.11)

where Ω is an element of the center of the gauge group,3 which commutes with Σ0 but not

with the full global symmetry. Then,

Σ
T−→ Σ̃ = ΩΣ0Σ

†Σ0Ω, (2.12)

and the scalar Lagrangian

LS =
f2

8
Tr
[
(DµΣ)†(DµΣ)

]
, (2.13)

with

DµΣ = ∂µΣ−
√

2i

2∑

j=1

[
gW a

jµ(Qa
j Σ + ΣQaT

j )− g′Bjµ(YjΣ + ΣY T
j )
]
, (2.14)

is also gauge and T-invariant.

This discrete symmetry must be implemented in the fermion sector too. This is less

straightforward. In fact, there is no proposed model fulfilling the three desired conditions:

to give masses to all (SM) fermions with Yukawa couplings, preserving a discrete symmetry

under which all new particles are odd and the SM ones even, and keeping the full global

symmetry before introducing the symmetry breaking. Although terms explicitly breaking

the global symmetries at the Lagrangian level must manifest as badly behaved contribu-

tions to physical processes [17], this will not be our case since all the explicit couplings

entering in the calculation we are interested in can be derived from Lagrangian terms which

are symmetric. Following refs. [23, 24] we introduce two left-handed fermion doublets in

incomplete SU(5) multiplets, one transforming just under SU(2)1 and the other under

SU(2)2, for each SM left-handed lepton doublet:

Ψ1 =



−iσ2l1L

0

0


 , Ψ2 =




0

0

−iσ2l2L


 , (2.15)

where liL =

(
νiL

ℓiL

)
, i = 1, 2, and

Ψ1 −→ V ∗Ψ1, Ψ2 −→ VΨ2, (2.16)

under an SU(5) transformation V . We define the T-parity action on these fermions

Ψ1
T←→ ΩΣ0Ψ2. (2.17)

3Note that we have reversed the sign of Ω as compared to the literature, to make it a group element.
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Then the usual T-even combination Ψ1 + ΩΣ0Ψ2 remains light and is identified, up to the

proper normalization, with the SM fermion doublet. The T-odd combination Ψ1−ΩΣ0Ψ2

pairs with a right-handed doublet (eigenvector of T), in a complete SO(5) multiplet,

ΨR =




·
·

−iσ2lHR


 , ΨR

T−→ ΩΨR, ΨR −→ UΨR, (2.18)

where U is an SO(5) transformation defined below, to form a heavy Dirac doublet. With

this aim in mind, a non-linear Yukawa Lagrangian is introduced,

LYH
= −κf

(
Ψ2ξ + Ψ1Σ0ξ

†
)

ΨR + h.c. , (2.19)

where ξ = eiΠ/f . This is indeed T-invariant, since eq. (2.11) implies

ξ
T−→ Ωξ†Ω, (2.20)

and invariant under global transformations,

Σ = ξ2Σ0 −→ V ΣV T ⇒ ξ −→ V ξU † ≡ UξΣ0V
T Σ0, (2.21)

where V is the global SU(5) tranformation and U a function of V and Π taking values

in the Lie algebra of the unbroken SO(5). It must be noted that the gauge singlet χR,

completing the SO(5) representation

ΨR =




ψ̃R

χR

−iσ2lHR


 (2.22)

and assumed to be heavy, is T-even.4 On the other hand, the extra doublet ψ̃R, which is

also assumed to be heavy enough to agree with EWPD, is T-odd as desired.

We have just introduced all heavy fields we need. However, one important comment

is in order. The Yukawa-type Lagrangian LYH
fixes the transformation properties of the

heavy fermions and then their gauge couplings, in particular the non-linear couplings of

the right-handed heavy fermions [25],

LF = iΨ1γ
µD∗

µΨ1 + iΨ2γ
µDµΨ2

+iΨRγ
µ

(
∂µ +

1

2
ξ†(Dµξ) +

1

2
ξ(Σ0D

∗
µΣ0ξ

†)

)
ΨR (2.23)

with

Dµ = ∂µ −
√

2ig(W a
1µQ

a
1 +W a

2µQ
a
2) +

√
2ig′ (Y1B1µ + Y2B2µ) . (2.24)

4If we had defined the T action on the fermions Ψ1

T←→ −Σ0Ψ2, ΨR
T−→ −ΨR and the Yukawa

Lagrangian with Ω’s, LYH
= −κf

`

Ψ2ξ + Ψ1Σ0Ωξ†Ω
´

ΨR + h.c., all new fermions would be T-odd and the

new Lagrangian invariant under the new T-parity [24], but not under the full global symmetry because Ω

does not commute with SU(5) neither with SO(5), although it does commute with the gauge group. We

must insist that the explicit couplings entering in our calculation are the same in both cases.
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The Lagrangian of eq. (2.23) includes the proper O(v2/f2) couplings to Goldstone fields,

absent in [13, 26], that render the one-loop amplitudes ultraviolet finite. Besides, in order

to assign the proper SM hypercharge y = −1 to the charged right-handed leptons ℓR, which

are SU(5) singlets and T-even, one can enlarge SU(5) with two extra U(1) groups, since

otherwise their hypercharge would be zero. Then, the corresponding gauge and T invariant

Lagrangian reads

L′F = iℓRγ
µ(∂µ + ig′yBµ)ℓR. (2.25)

For the lepton sector and the calculation we are interested in these are all the necessary

Lagrangian terms. However, in order to define what a muon or an electron is, we have to

diagonalise the mass matrix (Mℓ)ij = (λℓ)ijv in the corresponding Yukawa Lagrangian LY

which we assume to have all required properties [25, 27]5 (and also to include light neutrino

masses). This gives to leading order a mass term for the charged leptonsmℓiℓ
i
Lℓ

i
R+h.c., with

mℓi′
δi′j′ = (V ℓ†

L )i′i(λℓ)ij(V
ℓ
R)jj′ v (2.26)

and V ℓ
L,R two unitary matrices.6

Finally, in order to perform the calculation in the mass eigenstate basis we have to

diagonalise the full Lagrangian

L = LG + LS + LYH
+ LF + L′F + LY , (2.27)

and reexpress it in the mass eigenstate basis. The corresponding masses and eigenvectors

up to order v2/f2 are given in appendix A. The Feynman rules are collected in appendix B.

They are obtained expanding L to the required order. The coupling overlooked in [13] is

the v2/f2 correction to the right-handed coupling gR of the Zν̄i
Hν

j
H vertex, resulting from

the expansion of the last two terms of LF in eq. (2.23).

2.2 Flavour mixing

The new contributions to charged LFV processes must be proportional to the ratio of

the electroweak and the LHT breaking scales v2/f2 and to a combination of the matrix

5Right-handed leptons, as the other right-handed SM fermions, are usually taken to be singlets under

the non-abelian symmetries, transforming only under the gauge abelian subgroup. We must note that

this may be a too strong assumption. If we want to couple them to their left-handed counterpart, one

may be inspired by the following observation. There is only one SU(5) singlet in the decomposition of

the product of two Σ’s and one left-handed fermion multiplet,
P

5

αi=1
ǫα1α2α3α4α5 [(Σ)α1α2

(Σ)α3α4
Ψ2α5

+

(Σ†)α1α2
(Σ†)α3α4

Ψ1α5
], where ǫα1α2α3α4α5 is the totally antisymmetric tensor and the second term is the T

transformed of the first one. Alternatively, one could multiply three Σ’s and the other left-handed fermion

multiplet,
P5

αi=1
ǫα1α2α3α4α5δα6α7 [(Σ)α1α2

(Σ)α3α4
(Σ)α5α6

Ψ1α7
+ (Σ†)α1α2

(Σ†)α3α4
(Σ†)α5α6

Ψ2α7
], with

δα6α7 the Kronecker delta. In both cases, we get the wrong Higgs coupling. This is so be-

cause this product is an SU(5) singlet and then the Higgs coupling reads iπ+l− + (v + h +

iπ0)ν/
√

2. (In these expressions there are neither Ω’s nor Σ0’s because the determinant of Ω is 1 and

ǫα1α2α3α4α5(Σ0)α1β1
(Σ0)α2β2

(Σ0)α3β3
(Σ0)α4β4

(Σ0)α5β5
= ǫβ1β2β3β4β5 .) Then, getting the correct coupling

(v + h − iπ0)l−/
√

2 + iπ−ν requires the explicit breaking of SU(5). If ξ is introduced in the game, one

eventually has to break SO(5) as well.
6We denote the mass eigenstates with primes when necessary to distinguish them from the current

eigenstates.
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elements describing the misalignment of the heavy and charged lepton Yukawa couplings.

Let us then set our conventions for the description of the heavy-light mixing relevant to

our analysis, and in particular to the Feynman rules discussed above and collected in

appendix B. The SM interaction and mass eigenstates are related by the unitary matrices

in eq. (2.26),

ℓL = V ℓ
Lℓ

′
L, ℓR = V ℓ

Rℓ
′
R. (2.28)

Then the SM charged current Lagrangian reads

LSM
CC = − g√

2
νL /W

†
ℓL + h.c. = − g√

2
ν ′LV

ν†
L V ℓ

L /W
†
ℓ′L + h.c., (2.29)

where we have also introduced the corresponding rotation for the neutrinos. Thus, only

the combination V †
PMNS = V ν†

L V ℓ
L is observable. It must be noted, however, that the

neutrino contributions to LFV processes are negligible in the SM because so are their

masses. Hence, V ν
L can be assumed to be unity. Similarly we can also diagonalise the

heavy Yukawa couplings in eq. (2.19),

mli
′

H
δi′j′ = (V H†

L )i′iκij(V
H
R )jj′

√
2f, (2.30)

where V H
L acts on the left-handed fields and V H

R acts on the right-handed fields. Note that

there is no distinction between up- and down-type leptons. The T-odd gauge boson inter-

actions arising from the corresponding kinetic terms for left-handed leptons in eq. (2.23)

are proportional to

lL− /G−lL+ + h.c. = lHLV
H†
L

/GH

(
V ν

L νL

V ℓ
LℓL

)
+ h.c. (2.31)

where G− and lL− are the heavy, T-odd gauge bosons and fermions and lL+ are the SM,

T-even fermions in the interaction basis, whereas GH = AH , ZH ,WH ; lH = (νH , ℓH)T ;

and νL and ℓL are the corresponding mass eigenstates. Then, in analogy with the PMNS

matrix, the observable rotations are now

VHν ≡ V H†
L V ν

L , VHℓ ≡ V H†
L V ℓ

L. (2.32)

Note that both matrices are related, V †
HνVHℓ = V †

PMNS [28], but this relation can not

be tested unless VHν can be measured. The new contributions to the LFV amplitudes

describing a muon decay to an electron are then proportional to V ie∗
Hℓ V

iµ
Hℓ, with i counting

the heavy lepton doublets.

3. New contributions to LFV processes

As noted above, the SM contributions to the LFV processes µ → eγ and µ → eeē are

negligible for they are proportional to the observed neutrino masses. On the other hand the

new LHT contributions can be a priori large. In particular, one expects that the dominant

– 8 –
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i

j

Vµ

p2

p1

Figure 1: Effective vector-fermion vertex.

e2

e1µ

e3 e2

e1µ

e3

Figure 2: Generic penguin and box diagrams for µ → e1e2ē3. Crossed diagrams with e1 and e2

exchanged must be added.

contributions come from the exchange of the new vector bosons and heavy fermions required

to realise the discrete symmetry T.7 Here we study both processes in turn.

The amplitude µ → eγ is proportional to the vertex in figure 1, whose most general

structure for on-shell fermions fi,j can be written in terms of six form factors:

iΓµ(p1, p2) = ie
[
γµ(F V

L PL + F V
R PR) + (iF V

M + F V
E γ5)σ

µνQν + (iF V
S + F V

P γ5)Q
µ
]
, (3.1)

with PR,L = 1
2(1 ± γ5) and Q = p2 − p1 the vector boson momentum entering into the

vertex. If the vector boson V is a photon, the U(1) gauge symmetry is unbroken and

current conservation implies

(mi −mj)(F
γ
L + F γ

R) + 2iQ2F γ
S = 0, (3.2)

−(mi +mj)(F
γ
L − F

γ
R) + 2Q2F γ

P = 0. (3.3)

Hence, the LFV process fj → fiγ with i 6= j where the photon is on-shell (Q2 = 0) is com-

pletely described by a dipole transition. Indeed, according to eqs. (3.2), (3.3) F γ
L = F γ

R = 0

for on-shell photons, while the form factors F γ
S,P do not contribute to the amplitude because

real photons are transverse. Then, the total width for ℓj → ℓiγ is given by [29, 32 – 35]

Γ(ℓj → ℓiγ) =
α

2
m3

ℓj

(
|F γ

M |2 + |F γ
E |2
)
. (3.4)

On the other hand, two types of diagrams contribute to µ→ eeē (see figure 2). Now,

in the diagrams of the first type (penguins) the exchanged gauge boson V can be a γ

7The addition of new vector-like leptons in general imply large FCNC already at tree level [10, 29], and
stringent constraints from EWPD and LFV processes [30]. In the LHT they are absent because T-parity

forbids the coupling of a SM gauge boson to one light and one heavy fermion. Analogously, the presence

of heavy scalar triplets with hypercharge 1 in general allows for their direct coupling to two (SM) lepton

doublets (for a review and further references see [5, 31]). This is also absent in the LHT because the triplet

Φ in eq. (2.5) is T-odd and the SM leptons are T-even.
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or a Z but not a heavy vector boson for the coupling is forbidden by T-parity. (Higgs-

penguins are neglected.) F V
L and F V

R do not vanish in penguins. In fact, for γ these

form factors are proportional to Q2, as we have explicitly checked. Besides, as the gauge

boson couples to two on-shell electrons, the contributions from F V
S,P are irrelevant for they

multiply the electron mass. The amplitude for this process also receives contributions from

box diagrams. The total amplitude for µ(p)→ e(p1) e(p2) ē(p3) can be then written [32]

M = Mγ−penguin +MZ−penguin +Mbox, (3.5)

with

Mγ−penguin =
e2

Q2
ū(p1)

[
Q2γµ(AL

1 PL +AR
1 PR) +mµiσµνQν(A

L
2 PL +AR

2 PR)
]
u(p)

×ū(p2)γµv(p3)− (p1 ↔ p2), (3.6)

MZ−penguin =
e2

M2
Z

ū(p1) [γµ(FLPL + FRPR)] u(p) ū(p2) [γµ(Ze
LPL + Ze

RPR)] v(p3)

−(p1 ↔ p2), (3.7)

Mbox = e2BL
1 [ū(p1)γ

µPLu(p)] [ū(p2)γµPLv(p3)]

+e2BR
1 [ū(p1)γ

µPRu(p)] [ū(p2)γµPRv(p3)]

+e2BL
2 {[ū(p1)γ

µPLu(p)] [ū(p2)γµPRv(p3)]− (p1 ↔ p2)}
+e2BR

2 {[ū(p1)γ
µPRu(p)] [ū(p2)γµPLv(p3)]− (p1 ↔ p2)}

+e2BL
3 {[ū(p1)PLu(p)] [ū(p2)PLv(p3)]− (p1 ↔ p2)}

+e2BR
3 {[ū(p1)PRu(p)] [ū(p2)PRv(p3)]− (p1 ↔ p2)}

+e2BL
4 {[ū(p1)σ

µνPLu(p)] [ū(p2)σµνPLv(p3)]− (p1 ↔ p2)}
+e2BR

4 {[ū(p1)σ
µνPRu(p)] [ū(p2)σµνPRv(p3)]− (p1 ↔ p2)} . (3.8)

We have defined new vertex form factors in the penguin amplitudes

AL
1 = F γ

L/Q
2, AR

1 = F γ
R/Q

2, AL
2 = (F γ

M + iF γ
E)/mµ, AR

2 = (F γ
M − iF γ

E)/mµ,

FL = −FZ
L , FR = −FZ

R , (3.9)

and used that Q2 ≪ M2
Z in eq. (3.7). Ze

L,R are the corresponding Z couplings to the

electron in the SM (see appendix B). The dipole form factors FZ
M,E are dropped from the

amplitude because their contributions are effectively suppressed by a factor m2
µ/M

2
WH

. The

total width can then be written as [32, 35]:

Γ(µ→ eeē) =
α2m5

µ

32π

[
|AL

1 |2 + |AR
1 |2 − 2(AL

1A
R∗
2 +AL

2A
R∗
1 + h.c.)

+ (|AL
2 |2+|AR

2 |2)
(

16

3
ln
mµ

me
− 22

3

)
+

1

6
(|BL

1 |2+|BR
1 |2)+

1

3
(|BL

2 |2+|BR
2 |2)

+
1

24
(|BL

3 |2 + |BR
3 |2) + 6(|BL

4 |2 + |BR
4 |2)−

1

2
(BL

3 B
L∗
4 +BR

3 B
R∗
4 + h.c.)

+
1

3
(AL

1B
L∗
1 +AR

1 B
R∗
1 +AL

1B
L∗
2 +AR

1 B
R∗
2 + h.c.)
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− 2

3
(AR

2 B
L∗
1 +AL

2B
R∗
1 +AL

2B
R∗
2 +AR

2 B
L∗
2 + h.c.)

+
1

3

{
2(|FLL|2 + |FRR|2) + |FLR|2 + |FRL|2

+ (BL
1 F

∗
LL+BR

1 F
∗
RR+BL

2 F
∗
LR+BR

2 F
∗
RL+h.c.)+2(AL

1 F
∗
LL+AR

1 F
∗
RR+h.c.)

+ (AL
1 F

∗
LR +AR

1 F
∗
RL + h.c.)− 4(AR

2 F
∗
LL +AL

2F
∗
RR + h.c.)

− 2(AL
2 F

∗
RL +AR

2 F
∗
LR + h.c.)

}]
, (3.10)

where

FLL =
FLZ

e
L

M2
Z

, FRR =
FRZ

e
R

M2
Z

, FLR =
FLZ

e
R

M2
Z

, FRL =
FRZ

e
L

M2
Z

. (3.11)

Note that the amplitude for the Z-penguin could have been cast into the box structure

replacing

BL
1 → BL

1 + 2FLL, (3.12)

BR
1 → BR

1 + 2FRR, (3.13)

BL
2 → BL

2 + FLR, (3.14)

BR
2 → BR

2 + FRL. (3.15)

The branching ratios for both types of processes are obtained dividing by the SM

decay width

Γ(ℓj → ℓiνj ν̄i) =
G2

Fm
5
ℓj

192π3
, GF =

πα√
2s2WM2

W

. (3.16)

For τ decays the SM branching ratio must be corrected multiplying by 0.17 to take into

account other possible decay channels.

3.1 µ→ eγ

Let us now summarize the calculation for µ → eγ. The new one-loop Feynman diagrams

contributing to the V µe vertex in the LHT model in the ’t Hooft-Feynman gauge are listed

in figure 3. They are classified in six topology classes. As explained above, in the decay

µ → eγ the photon is on-shell and then only the dipole form factors F γ
M,E contribute.

They are proportional to the muon mass, reflecting the chirality flip character of the dipole

transition. (The electron mass is neglected.) We separate the contributions exchanging

WH , ZH and AH , expressing the results in terms of standard loop integrals (appendix C).

Diagrams exchanging WH. Taking M1 = MWH
and M2 = mνi

H
and introducing the

mass ratio

yi =
m2

Hi

M2
WH

, (3.17)
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νiH

e
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νiH

νiH

e

µ

AH , ZH

ℓiH

ℓiH

γ, Z

e

µ

WH

νiH

WH

γ, Z

e

µ

η, ω0

ℓiH

ℓiH

γ, Z

I II III

e

µ

ω

νiH

ω

γ, Z

e

µ

νiH

WH

ω

γ, Z

e

µ

νiH

ω

WH

γ, Z

IV V VI

e

µ

νiH

WH

e

γ, Z

e

µ

νiHµ

WH

γ, Z

e

µ

νiH

ω

e

γ, Z

e

µ

νiHµ

ω

γ, Z

e

µ

ℓiH

AH , ZH

e

γ, Z

e

µ

ℓiHµ

AH , ZH

γ, Z

e

µ

ℓiH

η, ω0

e

γ, Z

e

µ

ℓiHµ

η, ω0

γ, Z

Figure 3: New one-loop diagrams contributing to V µe in the LHT model.

with mHi ≡ mℓi
H
≃ mνi

H
, we find the following contributions from diagrams exchanging

WH (see figure 3):

II: F γ
M |WH

= −iF γ
E |WH

= −αW

16π
mµ

∑

i

V ie∗
Hℓ V

iµ
Hℓ

[
3C11 − C1

]
, (3.18)

IV: F γ
M |WH

= −iF γ
E |WH

= −αW

16π
mµ

∑

i

V ie∗
Hℓ V

iµ
Hℓ yi

[
C0 + 3C1 +

3

2
C11

]
, (3.19)

V: F γ
M |WH

= −iF γ
E |WH

= 0, (3.20)

VI: F γ
M |WH

= −iF γ
E |WH

=
αW

16π
mµ

∑

i

V ie∗
Hℓ V

iµ
Hℓ C1, (3.21)

Total: F γ
M |WH

= −iF γ
E |WH

=
αW

16π

mµ

M2
WH

∑

i

V ie∗
Hℓ V

iµ
Hℓ FW (yi), (3.22)

where αW ≡ α/s2W and

FW (x) = M2
1

[
2C1 − 3C11 − x

(
C0 + 3C1 +

3

2
C11

)]

=
5

6
− 3x− 15x2 − 6x3

12(1 − x)3 +
3x3

2(1− x)4 lnx. (3.23)
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The constant term drops from the amplitude due to the unitarity of the mixing matrix.

This result is in agreement with [36, 37, 13].

It may be worth to note that these contributions are completely analogous to those

of the SM with massive neutrinos, replacing WH by W , νi
H by νi and VHℓ by V †

PMNS. For

tiny neutrino masses, xi = m2
νi
/M2

W ≪ 1,

FW (x)→ 5

6
− x

4
+O(x2), (3.24)

and we recover a well known result [36] bounded by neutrino oscillation experiments:

B(µ→ eγ)SM =
3α

32π

∣∣∣∣∣
∑

i

V ei
PMNSV

µi∗
PMNS xi

∣∣∣∣∣

2

. 10−54. (3.25)

Diagrams exchanging ZH. Taking now M1 = MZH
and M2 = mℓi

H
, with the same yi,

we get:

I: F γ
M |ZH

= −iF γ
E |ZH

=
αW

16π
mµ

∑

i

V ie∗
Hℓ V

iµ
Hℓ

[
C0 + 3C1 +

3

2
C11

]
, (3.26)

III: F γ
M |ZH

= −iF γ
E |ZH

= −αW

32π
mµ

∑

i

V ie∗
Hℓ V

iµ
Hℓ yi

[
C1 −

3

2
C11

]
, (3.27)

Total: F γ
M |ZH

= −iF γ
E |ZH

=
αW

16π

mµ

M2
WH

∑

i

V ie∗
Hℓ V

iµ
Hℓ FZ(yi), (3.28)

where

FZ(x) = M2
1

[
C0 + 3C1 +

3

2
C11 −

x

2

(
C1 −

3

2
C11

)]

= −1

3
+

2x+ 5x2 − x3

8(1− x)3 +
3x2

4(1− x)4 lnx, (3.29)

in agreement with [37, 13].

Diagrams exchanging AH. This contribution can be obtained from that of the dia-

grams with a ZH , replacing ZH by AH . It is convenient to introduce the mass ratio

y′i = ayi, a =
M2

WH

M2
AH

=
5c2W
s2W

. (3.30)

Then,

F γ
M |AH

= −iF γ
E |AH

=
αW

16π

mµ

M2
AH

1

25

s2W
c2W

∑

i

V ie∗
Hℓ V

iµ
Hℓ FZ(y′i)

=
αW

16π

mµ

M2
WH

1

5

∑

i

V ie∗
Hℓ V

iµ
Hℓ FZ(y′i). (3.31)
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ℓiH
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ℓ
j
H

η, ω0

ℓiH

e1µ

AH , ZH

e2
e3

ℓ
j
H

AH , ZH

ℓiH

e1µ

η, ω0

e2
e3

ℓ
j
H

η, ω0

ℓiH

e1µ

η, ω0

A1b A2b A3b A4b

e2
e3

ℓiH

ℓ
j
H
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µ e1

AH , ZH

e2
e3

ℓiH

ℓ
j
H

η, ω0

µ e1

AH , ZH

e2
e3

ℓiH

ℓ
j
H

AH , ZH

µ e1

η, ω0

e2
e3

ℓiH

ℓ
j
H

η, ω0

µ e1

η, ω0

B1 B2 B3 B4

Figure 4: Box diagrams for µ → e1e2ē3 in the LHT model. Crossed diagrams with e1 and e2

exchanged must be added.

Branching ratio. Using M2
W /M2

WH
= v2/(4f2) and MWH

= MZH
, we finally obtain:

B(µ→ eγ) =
3α

2π

∣∣∣∣∣
v2

4f2

∑

i

V ie∗
Hℓ V

iµ
Hℓ

(
FW (yi) + FZ(yi) +

1

5
FZ(ayi)

)∣∣∣∣∣

2

, (3.32)

with FW and FZ given in eqs. (3.23) and (3.29), respectively.

3.2 µ→ eeē

The self-energy diagrams do contribute to F V
L,R in this process, and must be included to

calculate the penguin diagrams in µ → eeē . On the other hand, apart from the box

diagrams, only γ- and Z-penguin diagrams contribute to µ→ eeē in the LHT model. This

is so because AH and ZH do not couple to two ordinary fermions, as required by T-parity

conservation. (Higgs-penguins vanish in the limit of massless electrons, as do F V
R in this

limit too.) For the sake of brevity we present our results grouping together the WH , ZH

and AH contributions, but we distinguish among the γ- and Z-penguins in figure 3 and

the boxes in figure 4.

The γ-penguin. The form factors F γ
M and F γ

E have the same expres-

sions (3.22), (3.28), (3.31) as for an on-shell photon, since terms of order Q2 can
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be neglected. The contributions to F γ
L , which are proportional to Q2 ∼ m2

µ as expected,

are detailed below.

For M1 = MWH
, M2 = mνi

H
and yi = m2

Hi/M
2
WH

as before, the diagrams with WH

yield

F γ
L |WH

=
αW

4π

∑

i

V ie∗
Hℓ V

iµ
Hℓ GW (yi)

=
αW

4π

Q2

M2
WH

∑

i

V ie∗
Hℓ V

iµ
Hℓ G

(1)
W (yi), (3.33)

with

GW (x) =−1

2
+B1 + 6C00 + x

(
1

2
B1 + C00 −M2

1C0

)
−
(

2C1 +
1

2
C11

)
Q2

= ∆ǫ − ln
M2

1

µ2
+
Q2

M2
1

G
(1)
W (x) +O

(
Q4

M4
1

)
, (3.34)

G
(1)
W (x) = − 5

18
+
x(12 + x− 7x2)

24(1 − x)3 +
x2(12− 10x+ x2)

12(1 − x)4 lnx. (3.35)

Relations (C.20) and (C.22) have been used in (3.34). Note that owing to the unitarity of

the mixing matrix the x-independent terms in GW (x) drop out (including the ultraviolet

divergence). The SM prediction is obtained by replacing WH by W , νi
H by νi and

VHℓ by V †
PMNS.

For M1 = MZH
(= MWH

), M2 = mℓi
H
≃ mνi

H
and the same yi, the contribution of

diagrams with ZH is

F γ
L |ZH

=
αW

4π

∑

i

V ie∗
Hℓ V

iµ
Hℓ GZ(yi) (3.36)

=
αW

4π

Q2

M2
WH

∑

i

V ie∗
Hℓ V

iµ
Hℓ G

(1)
Z (yi), (3.37)

with

GZ(x) =
(
1 +

x

2

)(
−1

4
+

1

2
B1 + C00 −

x

2
M2

1C0

)
−
(

1

2
C0 + C1 +

1

8
(2 + x)C11

)
Q2

=
Q2

M2
1

G
(1)
Z (x) +O

(
Q4

M4
1

)
, (3.38)

G
(1)
Z (x) =

1

36
+
x(18 − 11x− x2)

48(1− x)3 − 4− 16x+ 9x2

24(1 − x)4 lnx. (3.39)

The relation (C.22) has been used in eq. (3.38).

Finally, the contribution of diagrams with AH is obtained from that of diagrams with

ZH replacing ZH by AH , and yi by y′i = 5c2W yi/s
2
W :

F γ
L |AH

=
αW

4π

Q2

M2
WH

1

5

∑

i

V ie∗
Hℓ V

iµ
Hℓ G

(1)
Z (y′i). (3.40)

– 15 –



J
H
E
P
0
1
(
2
0
0
9
)
0
8
0

The Z-penguin. The Z dipole form factors FZ
M,E (which are chirality flipping and hence

proportional to the muon mass) can be neglected as compared to FZ
L . This is in contrast

with the γ-penguin, for which QF γ
M,E(∼ QFZ

M,E) ∼ Q2/M2
WH

. m2
µ/M

2
WH
∼ F γ

L , to be

compared with FZ
L ∼ 1. This justifies to neglect FZ

M,E in the Z-penguin (3.7).

Taking M1 = MWH
, M2 = mHi and yi = m2

Hi/M
2
WH

, and using the unitarity of VHℓ

we obtain:

FZ
L |WH

=
αW

8π

1

sW cW

∑

i

V ie∗
Hℓ V

iµ
Hℓ

{
− 2c2W

(
−1

2
+B1 + 6C00 − yiM

2
WH

C0

)

− yic
2
W

(
B1 + 2C00

)

+ 2
(
1 +

yi

2

)(
−1

4
+

1

2
B1 + C00 −

yi

2
M2

WH
C0

)

+
v2

f2

yi

16

[
1 + 4(C00 − C00 +M2

WH

(
C0 − 2C0

)
)
]}

=
αW

8π

1

sW cW

∑

i

V ie∗
Hℓ V

iµ
Hℓ

{
− 2c2W

(
∆ǫ − ln

M2
WH

µ2

)
+
v2

f2

yi

8
HW (yi)

}

=
αW

8π

1

sW cW

∑

i

V ie∗
Hℓ V

iµ
Hℓ

v2

f2

yi

8
HW (yi) , (3.41)

with

HW (x) =
6− x
1− x +

2 + 3x

(1− x)2 lnx, (3.42)

and

FZ
L |ZH

=
αW

8π

1

sW cW

∑

i

V ie∗
Hℓ V

iµ
Hℓ(1− 2c2W )

(
−1

4
+

1

2
B1 + C00 −

yi

2
M2

WH
C0

)

×
{(

1 +
yi

2

)
− v2

f2

[
yi

4
+

(
cW
sW

yi −
2sW

5cW

)
xH

]}
= 0, (3.43)

FZ
L |AH

=
αW

8π

1

sW cW

∑

i

V ie∗
Hℓ V

iµ
Hℓ(1− 2c2W )

(
−1

4
+

1

2
B1 + C00 −

yi

2
M2

AH
C0

)

× 1

25

s2W
c2W

{(
1 +

y′i
2

)
− v2

f2

[
5

4
y′i +

(
sW

cW
y′i + 10

cW
sW

)
xH

]}
= 0. (3.44)

Here xH is a constant defining the mixing between the heavy neutral gauge bosons and

function of the gauge couplings (see eq. (A.4)). We observe that the only contribution to

the Z-penguins comes from the diagrams with WH , and it is proportional to v2/f2. The

potentially dangerous ultraviolet divergences proportional to yi have cancelled thanks to

the proper v2/f2 corrections to the ω±W∓
HZ and Zν̄i

HRν
i
HR couplings. The corrections to

the latter were not included in [13].

For completeness, we give the prediction for the Z-penguin in the SM with light massive

neutrinos. Although in the LHT the heavy leptons are vector-like and the Z boson couples

to both chiralities, the final form of the vertex is the same. This is more easily seen in the

unitary gauge, where the heavy modes contribution is only given by diagram I in figure 3
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and is proportional to the v2/f2 correction to the Zν̄i
HRν

i
HR coupling (see [26] for further

discussion). Taking M1 = MW , M2 = mνi
and xi = m2

νi
/M2

W , and using the unitarity of

VPMNS we obtain:

FZ
L |W =

αW

8π

1

sW cW

∑

i

V ei
PMNSV

µi∗
PMNS

{
− 2c2W

(
−1

2
+B1 + 6C00 − xiM

2
WC0

)

+
xi

2
(1− 2c2W )

(
B1 + 2C00

)

− 1

2
+B1 + 2C00 −

xi

2
M2

W (4C0 + xiC0)

}

=
αW

16π

1

sW cW

∑

i

V ei
PMNSV

µi∗
PMNS

{
− 4c2W

(
∆ǫ − ln

M2
W

µ2

)
− 1

+ 2(B1 + 2C00)− xiM
2
W (4C0 + xiC0)

}

=
αW

16π

1

sW cW

∑

i

V ei
PMNSV

µi∗
PMNS xiHW (xi), (3.45)

which is, of course, finite and in agreement with ref. [33] for Q2 = 0.

Box diagrams. There are eight different classes of box diagrams grouped in types A and

B in the LHT model (figure 4). In the limit of zero external momenta (all internal masses

are much larger than the muon mass) all of them have the same form, being proportional

to a scalar integral over the internal momentum q. Indeed, omitting the corresponding

denominator (q2 −m2
Hi)

2(q2 −M2
GH

)2, with G = W,Z or A,

A1 : 〈p1| γµPL(−/q +mHi)γ
νPL |p〉 〈p2| γνPL(−/q +mHi)γµPL |p3〉

=
q2

4
〈p1| γµγαγνPL |p〉 〈p2| γνγαγµPL |p3〉

= q2 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.46)

A2 : −〈p1| γµPL(−/q +mHi)PL |p〉 〈p2|PR(−/q +mHi)γµPL |p3〉
= −mHimHj 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.47)

A3 : −〈p1|PR(−/q +mHi)γ
µPL |p〉 〈p2| γµPL(−/q +mHi)PL |p3〉

= −mHimHj 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.48)

A4 : 〈p1|PR(−/q +mHi)PL |p〉 〈p2|PR(−/q +mHi)PL |p3〉

=
q2

4
〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.49)

B1 : 〈p1| γµPL(/q +mHi)γ
νPL |p〉 〈p2| γνPL(−/q +mHi)γµPL |p3〉

= −q
2

4
〈p1| γµγαγνPL |p〉 〈p2| γµγαγνPL |p3〉

= −4q2 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.50)

B2 : −〈p1| γµPL(/q +mHi)PL |p〉 〈p2|PR(−/q +mHi)γµPL |p3〉
= −mHimHj 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.51)
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B3 : −〈p1|PR(/q +mHi)γ
µPL |p〉 〈p2| γµPL(−/q +mHi)PL |p3〉

= −mHimHj 〈p1| γµPL |p〉 〈p2| γµPL |p3〉 , (3.52)

B4 : 〈p1|PR(/q +mHi)PL |p〉 〈p2|PR(−/q +mHi)PL |p3〉

= −q
2

4
〈p1| γµPL |p〉 〈p2| γµPL |p3〉 . (3.53)

Thus, all box form factors except BL
1 vanish (see eq. (3.8)). Using the Fierz identity

〈1| γµPL |2〉 〈3| γµPL |4〉 = −〈3| γµPL |2〉 〈1| γµPL |4〉 (3.54)

and including all the factors, we obtain the generic expressions for the contributions from

diagrams of types A and B (see figure 4 and appendix B for definitions),

A : BL
1 = 2

α

4π

∑

ij

[(
gie∗
L1 g

iµ
L2g

je
L1g

je∗
L2 +

1

4
cie∗L1 c

iµ
L2c

je
L1c

je∗
L2

)
D̃0(M

2
1 ,M

2
2 ,m

2
Hi,m

2
Hj)

−
(
gie∗
L1 c

iµ
L2g

je
L1c

je∗
L2 + cie∗L1g

iµ
L2c

je
L1g

je∗
L2

)
mHimHjD0(M

2
1 ,M

2
2 ,m

2
Hi,m

2
Hj)

]
, (3.55)

B : BL
1 = 2

α

4π

∑

ij

[
−
(

4gie∗
L2 g

iµ
L1g

je
L1g

je∗
L2 +

1

4
cie∗L2 c

iµ
L1c

je
L1c

je∗
L2

)
D̃0(M

2
1 ,M

2
2 ,m

2
Hi,m

2
Hj)

−
(
gie∗
L2 c

iµ
L1c

je
L1g

je∗
L2 + cie∗L2 g

iµ
L1g

je
L1c

je∗
L2

)
mHimHjD0(M

2
1 ,M

2
2 ,m

2
Hi,m

2
Hj)

]
. (3.56)

Finally, replacing the vertex coefficients given in appendix B we derive the contributions

of the heavy gauge bosons and the corresponding would-be-Goldstone bosons:

BL
1 (WH ,WH) =

α

2π

1

4s4W

1

M2
W

v2

4f2

∑

ij

χij

[(
1 +

1

4
yiyj

)
d̃0(yi, yj)− 2yiyjd0(yi, yj)

]
, (3.57)

BL
1 (ZH , ZH) =

α

2π

1

16s4W

1

M2
W

v2

4f2

∑

ij

χij

[
−3d̃0(yi, yj)

]
, (3.58)

BL
1 (AH , AH) =

α

2π

1

16s4W

1

25a

1

M2
W

v2

4f2

∑

ij

χij

[
−3d̃0(y

′
i, y

′
j)
]
, (3.59)

BL
1 (ZH , AH) =

α

2π

1

16s4W

2

5

1

M2
W

v2

4f2

∑

ij

χij

[
−3d̃0(a, y

′
i, y

′
j)
]
, (3.60)

with

χij = V ie∗
Hℓ V

iµ
Hℓ|V

je
Hℓ|2. (3.61)

The SM contribution from the exchange of the light neutrinos is again similar to that from

WH , but performing the corresponding replacements.

Branching ratio. Collecting everything, the non-vanishing contributions to the vertex

and box form factors in eq. (3.10) from γ-penguins, Z-penguins and box diagrams in the

LHT can be written

AL
1 =

F γ
L

Q2
=
αW

4π

1

M2
W

v2

4f2

∑

i

V ie∗
Hℓ V

iµ
Hℓ

[
G

(1)
W (yi) +G

(1)
Z (yi) +

1

5
G

(1)
Z (ayi)

]
, (3.62)
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AR
2 =

2F γ
M

mµ
=
αW

8π

1

M2
W

v2

4f2

∑

i

V ie∗
Hℓ V

iµ
Hℓ

[
FW (yi) + FZ(yi) +

1

5
FZ(ayi)

]
, (3.63)

FLL = −F
Z
L Z

e
L

M2
Z

=
αW

8π

1− 2s2W
2s2W

1

M2
W

v2

f2

∑

i

V ie∗
Hℓ V

iµ
Hℓ

yi

8
HW (yi), (3.64)

FLR = −F
Z
L Z

e
R

M2
Z

= −αW

8π

1

M2
W

v2

f2

∑

i

V ie∗
Hℓ V

iµ
Hℓ

yi

8
HW (yi), (3.65)

BL
1 =

αW

8π

1

s2W

1

M2
W

v2

4f2

∑

ij

χij

[(
1 +

1

4
yiyj

)
d̃0(yi, yj)− 2yiyjd0(yi, yj)

−3

4
d̃0(yi, yj)−

3

100a
d̃0(ayi, ayj)−

3

10
d̃0(a, ayi, ayj)

]
. (3.66)

The branching ratio reads

B(µ→ eeē) =12s4WM4
W

{
|AL

1 |2 − 2(AL
1A

R∗
2 + h.c.) + |AR

2 |2
(

16

3
ln
mµ

me
− 22

3

)

+
1

6
|BL

1 |2+
1

3
(AL

1B
L∗
1 +h.c.)− 2

3
(AR

2 B
L∗
1 +h.c.)+

1

3

(
2|FLL|2+|FLR|2

)

+
1

3

(
BL

1 F
∗
LL+2AL

1 F
∗
LL+AL

1F
∗
LR−4AR

2 F
∗
LL−2AR

2 F
∗
LR+h.c.

)}
. (3.67)

4. Numerical results

In order to study the bounds on the new parameters imposed by the experimental limits

on µ→ eγ and µ→ eeē, it is convenient to restrict ourselves to the case of two generations.

Hence, we are left with four parameters: the LH order parameter f , the masses of the two

heavy lepton doublets in (A.18) mHi (i = 1, 2), and the angle θ defining the 2 × 2 mixing

matrix between the heavy and the SM charged leptons

VHℓ =

(
V 1e

Hℓ V
1µ
Hℓ

V 2e
Hℓ V

2µ
Hℓ

)
=

(
cos θ sin θ

− sin θ cos θ

)
. (4.1)

(In the contributions we consider the e and µ phases, as well as the heavy lepton doublet

phases, can be safely redefined.) We shall replace mH1, mH2 by δ and ỹ, however, to

present our results. The former, which is proportional to the heavy lepton mass difference,

describes together with θ the alignment between heavy and SM charged leptons,

δ =
m2

H2 −m2
H1

mH1mH2
. (4.2)

Whereas the latter, which sets the heavy lepton scale, is relevant for discussing decoupling,

ỹ =
√
y1y2, yi =

m2
Hi

M2
WH

, i = 1, 2. (4.3)
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Note that both MWH
and mHi are proportional to f (see appendix A). The penguin

contributions then take the form

2∑

i=1

V ie∗
Hℓ V

iµ
Hℓ F (yi) =

sin 2θ

2
[F (y1)− F (y2)] , (4.4)

where F stands for a generic function; and the box contributions

2∑

i,j=1

V ie∗
Hℓ V

iµ
Hℓ|V

je
Hℓ|2 F (yi, yj) =

sin 2θ

2

{
cos2 θ [F (y1, y1)− F (y2, y1)]

+ sin2 θ [F (y1, y2)− F (y2, y2)]
}
. (4.5)

Thus, the LFV amplitudes vanish for vanishing mixing, θ = 0, or heavy mass split-

ting, δ = 0.

We plot for illustration in figure 5 the form factors for the µ → eγ and µ → eeē

decay amplitudes calculated in the previous section as a function of δ for several θ and

ỹ values and f = 1TeV. They grow with ỹ and scale like f−2. In contrast with the

MSSM case [32, 35], box contributions to µ→ eeē are of the same order than penguins, in

particular for ỹ & 1, which explains the different behaviour of the decay rates with the sign

of δ for non-maximal flavour mixing. The dependence on the new parameters is more clearly

seen in figures 6 and 7. They show the present exclusion contours in the (sin 2θ, δ) plane

implied by the present limits on B(µ→ eγ) < 1.2×10−11 [38] and B(µ→ eeē) < 10−12 [39],

respectively, and for three values of ỹ, 0.25, 1, 4. The regions above each line of constant

f are excluded. As it can be observed, mixing angle and mass splitting are correlated,

because the alignment between the Yukawa couplings of the heavy and the SM charged

leptons goes to zero with any of them. Present limits on LFV muon decays imply that θ or

δ . 0.1 for ỹ = 1 and f = 1TeV. If no LFV signal is seen by the MEG experiment at PSI,

the limits are expected to improve by two orders of magnitude [40] and the corresponding

exclusion contours would be those in figures 6 and 7 replacing f by
√

10f .

As already emphasized, the LFV branching ratios scale like f−4. However, the ỹ

dependence deserves more discussion. In figure 8 we plot the variation of the form factors

and of the branching ratios with ỹ for maximal mixing, sin 2θ = 1, and δ = 1. Two

comments are in order. The non-observation of these LFV processes already sets non-

trivial limits on the LHT parameters because the central region ỹ ∼ 1 is already excluded

for natural values of the other parameters. More interestingly, B(µ → eeē) goes like ỹ2

for very large ỹ. This is so because ỹ is quadratic in the heavy Yukawa coupling κ, which

goes to infinity with the heavy lepton masses for fixed f . This behaviour is similar to the

leading EWPD dependence on the top quark mass [41], which scales with m2
t in the region

of physical interest, allowing a determination of the top mass from a global fit [42]. Just

like in the top quark case, the dependence is moderate when the particles within multiplets

become degenerate (the symmetry is recovered). Generic limits from all these figures are

tabulated in the summary below.

Let us, finally, comment on the general case with three families. Similarly to the two

family case, we have to align the new contributions to the electron and to the muon at the

10% level. However, now this alignment is not easily related to the usual parameterization
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1.0
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Figure 5: Form factors multiplied by M2
W , for f = 1TeV.
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Figure 6: Contours of B(µ → eγ) = 1.2 × 10−11 in the (sin 2θ, δ) plane for ỹ = 0.25, 1, 4 (left,

center, right) and f = 0.5, 1, 2, 3, 4TeV (from bottom up).

Figure 7: Contours of B(µ → eeē) = 10−12 in the (sin 2θ, δ) plane for ỹ = 0.25, 1, 4 (left, center,

right) and f = 0.5, 1, 2, 3, 4TeV (from bottom up).

of the mixing in terms of two mass splittings, three mixing angles and one phase (as in

the two family case we can safely redefine the e and µ, as well as the heavy lepton doublet

phases, and then use the same parameterization as for the CKM matrix [42]). In order to

estimate the fine tuning required by µ → eγ, for instance, we rather introduce the ratio

(see eq. (4.4))

∣∣∣∣∣

3∑

i=1

V ie∗
Hℓ V

iµ
Hℓ F (yi)

∣∣∣∣∣

2

(
3∑

i=1

|V ie
Hℓ|2 |F (yi)|

)(
3∑

i=1

|V iµ
Hℓ|2 |F (yi)|

) , (4.6)
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-20

B(µ→ eeē)
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10410310210110010−110−210−3
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Figure 8: Form factors multiplied by M2
W (left) and branching ratios (right) as a function of ỹ for

sin 2θ = δ = 1 and f = 1TeV. The latter must be compared with present experimental limits on

B(µ→ eγ) < 1.2× 10−11 and B(µ→ eeē) < 10−12.

which approximately scales like sin2 2θδ2 for two families. This is . 10−2 for almost all

the three family parameter space when B(µ → eγ) is below the present experimental

limit, and at most ∼ 10−4 if the limit improves by two orders of magnitude. There is a

special region in parameter space, however, where the ratio (4.6) can be larger even though

B(µ → eγ) is well below the experimental limit. This is around yi ∼ 0.3, where the total

amplitude F (yi) ∼ FW (yi) + FZ(yi) + 1
5FZ(ayi) in eq. (3.32) is negligible (see right panel

of figure 8). But this region is excluded by the present limit on B(µ→ eeē). Thus, the new

contributions to the electron and to the muon must be aligned at the 10% level, being the

square of this precision the largest value of the ratio in eq. (4.6). Analogously, we can define

the corresponding ratio using the amplitudes for µ → eeē in eqs. (4.4), (4.5), obtaining

similar results. The numerical analysis presented here is at some extent complementary

to the study in ref. [13], where the correlation between different observables, in particular

between B(µ→ eγ) and B(µ→ eeē), is explicitly shown.

5. Conclusions

LH models provide a natural explanation of the little hierarchy between the EW scale

and the scale where we expect the NP to be, and which is to be explored by the LHC.

However, these models where the Higgs is a pseudo-Goldstone boson of an approximate

global symmetry in general suffer some tension in accommodating the many new particles

required near the TeV scale without upsetting the EWPD constraints. This is ameliorated

by further extending the model to include a discrete symmetry, the T parity, under which

all observed particles, including the Higgs boson, are even and hopefully all the new ones

are odd. All these models, as any universal NP near the TeV scale, must also guarantee
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B(µ→ eγ) < 1.2× 10−11 (sin 2θ = 1)

f [TeV] ỹ = 0.25 ỹ = 1 ỹ = 4

0.5 |δ| < 0.13 |δ| < 0.040 |δ| < 0.027

1.0 |δ| < 0.52 |δ| < 0.16 |δ| < 0.11

2.0 |δ| < 2.2 |δ| < 0.66 |δ| < 0.43

4.0 |δ| < 14 |δ| < 3.5 |δ| < 2.0

Table 1: Bounds on the splitting δ from the present experimental limit on B(µ → eγ) for several

scales f and ratios ỹ, taking sin 2θ = 1.

B(µ→ eeē) < 10−12 (sin 2θ = 1)

f [TeV] ỹ = 0.25 ỹ = 1 ỹ = 4

0.5 |δ| < 0.16 |δ| < 0.045 |δ| < 0.015

1.0 |δ| < 0.64 |δ| < 0.18 |δ| < 0.061

2.0 |δ| < 2.7 |δ| < 0.72 |δ| < 0.24

4.0 |δ| < 13 |δ| < 3.3 |δ| < 0.98

Table 2: Bounds on the splitting δ from the present experimental limits on B(µ→ eeē) for several

scales f and ratios ỹ, taking sin 2θ = 1.

that the new particles do not mediate too large FCNC processes. We have recalculated

the new contributions to the LFV processes µ → eγ and µ → eeē in the LHT model, the

most economical of such proposals. The full Lagrangian has been introduced and all pieces

of the calculation, in particular the Z-penguin and box diagrams contributing to µ→ eeē,

have been considered in detail. We have found that the former are ultraviolet finite when

all the Goldstone boson interactions to the order considered are included. Whereas we

recover previous results for µ→ eγ [12, 13].

The present limits on the rates of LFV processes translate into bounds on the LHT

parameters. Tables 1 and 2 show the bounds imposed in the two family case by µ → eγ

and µ→ eeē, respectively, on the heavy lepton mass splitting δ for a maximal mixing angle,

sin 2θ = 1, and several values of the LH scale f and the ratio ỹ related to the common

heavy lepton mass. The main conclusion is that the new parameters must be tuned to

10% for a natural value f ∼ 1 TeV. Obviously, raising f quickly reduces the decay rates,

which scale as f−4. The results are also sensitive to the parameter ỹ, but the dependence

is mild for moderate values (see figure 8), when rates scale roughly like sin2 2θ δ2. The

non-observation of LFV effects may be also the result of a conspiracy among the new

parameters being all slightly above or below their expected natural values, of order one.

Analogous fine tuning on the alignment of light and heavy leptons is required in the general

case with three families.

In table 3 we give both the present and future bounds if the current limits on µ→ eγ

and µ → eeē are improved by two orders of magnitude [40]. An asterisk indicates that

the assumed values are excluded for any possible ỹ. A non-empty region for ỹ is recovered
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B(µ→ eγ) < 1.2 × 10−11 (10−13) B(µ→ eeē) < 10−12 (10−14)

f/TeV > 2.5 (8.1) 2.3 (7.4)

sin 2θ < 0.16 (0.015) 0.16 (0.016)

|δ| < 0.16 (0.015) 0.18 (0.018)

ỹ < 0.16 (*) * (*)

Table 3: Bounds from current (future) experiments on individual LHT parameters, assuming the

others fixed to the natural values f = 1TeV, sin 2θ = δ = ỹ = 1. An asterisk means that the quoted

limit on the branching ratio excludes any ỹ value for the assumed values of the other parameters.

increasing f or decreasing sin 2θ and/or δ (see figures 6 and 7). Finally, we must note that

the limits on the corresponding tau decays τ → µγ, eγ and τ → µµµ̄, eeē are weaker [43],

typically < 10−8 − 10−7. Then, they do not further restrict the order parameter f for

natural values of the other heavy lepton parameters, but could eventually constrain the

corresponding mixing angles and heavy lepton masses, which are in principle independent

of the parameters otherwise involved in the muon to electron processes. However, present

limits give no significative bound on the parameters related to the third lepton family.

Note added. During the completion of this manuscript several related papers were re-

leased. The one-loop contributions in the LHT to the tbW vertex in ref. [44] and to Zℓℓ′

in ref. [45] have been calculated. In neither case has the order v2/f2 correction to the

SM weak boson coupling to heavy right-handed fermions been included. More recently a

new analysis of B decays in the this model has been carried out in ref. [46], yielding an

ultraviolet finite result when this correction was taken into account following ref. [15] and

in agreement with our findings.
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A. Physical fields

After the electroweak symmetry breaking (EWSB) the SM gauge boson mass eigenstates,

which are the T-even, write

W± =
1√
2
(W 1 ∓ iW 2),

(
Z

A

)
=

(
cW sW

−sW cW

)(
W 3

B

)
, (A.1)

with

W a =
W a

1 +W a
2√

2
, B =

B1 +B2√
2

; (A.2)
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whereas the T-odd combinations expanding the heavy sector read to order v2/f2 are

W±
H =

1√
2
(W 1

H ∓ iW 2
H),

(
ZH

AH

)
=




1 −xH
v2

f2

xH
v2

f2
1




(
W 3

H

BH

)
, (A.3)

with

W a
H =

W a
1 −W a

2√
2

, BH =
B1 −B2√

2
, xH =

5gg′

4(5g2 − g′2) . (A.4)

Their masses to order v2/f2 are

MW =
gv

2

(
1− v2

12f2

)
, MZ = MW /cW , e = gsW = g′cW , v ≃ 246 GeV,

MWH
= MZH

= gf

(
1− v2

8f2

)
, MAH

=
g′f√

5

(
1− 5v2

8f2

)
. (A.5)

The scalar fields must be also rotated into the physical fields [20]:

π0 → π0

(
1 +

v2

12f2

)
, (A.6)

π± → π±
(

1 +
v2

12f2

)
, (A.7)

h → h, (A.8)

Φ0 → Φ0

(
1 +

v2

12f2

)
, (A.9)

ΦP → ΦP +
(√

10η −
√

2ω0 + ΦP
) v2

12f2
, (A.10)

Φ± → Φ±

(
1 +

v2

24f2

)
± iω± v2

12f2
, (A.11)

Φ++ → Φ++, (A.12)

η → η +
5g′η − 4

√
5[g′(ω0 +

√
2ΦP )− 6gxHω

0]

24g′
v2

f2
, (A.13)

ω0 → ω0 +
5g(ω0 + 4

√
2ΦP )− 4

√
5η(5g + 6g′xH)

120g

v2

f2
, (A.14)

ω± → ω±

(
1 +

v2

24f2

)
± iΦ± v

2

f2
. (A.15)

For each SM left-handed lepton doublet there is an extra vector-like doublet,

liL =

(
νiL

ℓiL

)
, i = 1, 2, lHR =

(
νHR

ℓHR

)
. (A.16)

Then the left-handed mass eigenstates are

lL =
l1L − l2L√

2
, lHL =

l1L + l2L√
2

, l = ν, ℓ, (A.17)
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where we omit the flavour index. νL, ℓL are the SM (T-even) left-handed leptons, whereas

νHL, ℓHL (νHR, ℓHR) are T-odd left (right) handed leptons with masses of O(f). The

SM right-handed fermions are assumed to be singlets under the non-abelian symmetries.

Heavy leptons receive their masses from the Yukawa term proportional to κ (2.19), which

is in general a non-diagonal matrix in flavour space that induces flavour mixing in the T-

odd sector. The misalignment between the mass matrices of the T-even (SM) and T-odd

(heavy) sectors is a source of intergeneration mixing (see section 2.2). The diagonalisation

of the κ matrix (see eq. (2.30)) yield the heavy lepton masses

mℓi
H

=
√

2κiif ≡ mHi, mνi
H

= mHi

(
1− v2

8f2

)
. (A.18)

B. Feynman rules

We present below just the Feynman rules which are necessary for the calculation of the

LFV processes discussed in this work. They are given in terms of generic couplings for the

following general vertices involving scalars (S), fermions (F) and/or gauge bosons (V):

[VµFF] = ieγµ(gLPL + gRPR), (B.1)

[SFF] = ie(cLPL + cRPR), (B.2)

[SVµVν ] = ieKgµν , (B.3)

[VµS(p1)S(p2)] = ieG(p1 − p2)
µ, (B.4)

[Vµ(p1)Vν(p2)Vρ(p3)] = ieJ [gµν(p2 − p1)
ρ + gνρ(p3 − p2)

µ + gµρ(p1 − p3)
ν ] , (B.5)

where all momenta are assumed incoming. The conjugate vertices are obtained replacing:

gL,R ↔ g∗L,R, cL,R ↔ c∗R,L, K ↔ K∗, G↔ G∗, J ↔ J∗. (B.6)

B.1 SM with massive neutrinos

For comparison we first give the rules for the SM with light massive neutrinos. The sign

conventions for the covariant derivatives are those in ref. [22].

VFF γf̄ if j Zf̄ if j W+ν̄iℓj W−ℓ̄jνi

gL −Qfδij Zf
Lδij

1√
2sW

V ji∗
PMNS

1√
2sW

V ji
PMNS

gR −Qfδij Zf
Rδij 0 0

where Zf
L,R = (vf ± af )/2sW cW with vf = T fL

3 − 2Qfs
2
W and af = T fL

3 .

SFF φ+ν̄iℓj

cL +
1√
2sW

mνi

MW
V ji∗

PMNS

cR − 1√
2sW

mℓj

MW
V ji∗

PMNS

SVV φ±W∓γ φ±W∓Z

K −MW −MW sW/cW

– 27 –



J
H
E
P
0
1
(
2
0
0
9
)
0
8
0

VSS γφ±φ∓ Zφ±φ∓

G ∓1 ±c
2
W − s2W
2sW cW

VVV γW+W− ZW+W−

J −1 cW /sW

The fields φ± are the would-be Goldstone bosons eaten by the gauge bosons fields W±

after the EWSB.

B.2 LHT model

The sign conventions are chosen to be compatible with those employed for the SM (which

coincide with those in [26] up to a sign in the definition of the abelian gauge couplings

in the covariant derivative in eq. (2.14)). In particular, these Feynman rules include the

O(v2/f2) contribution to the Zν̄i
Hν

j
H vertex missed in the literature.

VFF γf̄ i
Hf

j
H Zν̄i

Hν
j
H Zℓ̄iHℓ

j
H

gL −Qfδij
1

2sW cW
δij

1

2sW cW
(−1 + 2s2W )δij

gR −Qfδij
1

2sW cW

(
1− v2

4f2

)
δij

1

2sW cW
(−1 + 2s2W )δij

VFF AH ℓ̄
i
Hℓ

j ZH ℓ̄
i
Hℓ

j W+
H ν̄

i
Hℓ

j

gL

(
1

10cW
− xH

2sW

v2

f2

)
V ij

Hℓ −
(

1

2sW
+

xH

10cW

v2

f2

)
V ij

Hℓ

1√
2sW

V ij
Hℓ

gR 0 0 0

SFF ηℓ̄iHℓ
j ω0ℓ̄iHℓ

j

cL
i

10cW

mℓi
H

MAH

[
1− v2

f2

(
5

4
+xH

sW

cW

)]
V ij

Hℓ

i

2sW

mℓi
H

MZH

[
1 +

v2

f2

(
−1

4
+xH

cW
sW

)]
V ij

Hℓ

cR − i

10cW

mℓi

MAH

V ij
Hℓ − i

2sW

mℓi

MZH

V ij
Hℓ

SFF ω+ν̄i
Hℓ

j

cL − i√
2sW

mνi
H

MWH

V ij
Hℓ

cR
i√

2sW

mℓi

MWH

V ij
Hℓ

SVV ω±W∓
Hγ ω±W∓

HZ

K ±iMWH
∓iMWH

cW
sW

(
1− v2

4f2c2W

)

VSS γω±ω∓ Zω±ω∓

G ∓1 ± cW
sW

(
1− v2

8f2c2W

)

VVV γW+
HW

−
H ZW+

HW
−
H

J −1 cW /sW
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q + kN−1

q + k1

q

p1

pN pN−1

p2

m1

mN−1

m0

Figure 9: Generic one-loop diagram with N legs.

The fields ω±, ω0 and η are the Goldstone bosons of the [SU(2)×U(1)]1×[SU(2)×U(1)]2
breaking into its diagonal subgroup. They are eaten by the heavy gauge bosons W±

H , ZH

and AH , respectively. (Actually these Goldstone bosons mix with an additional physical

Higgs triplet Φ at order v2/f2 and it is this linear combination of fields that is eaten.)

In principle, also the scalar triplet Φ contributes to the processes considered here. The

corresponding diagrams can be obtained replacing W±
H by Φ± and ZH , AH by Φ0 and

Φ0
P . The Feynman rules for the vertices containing Φ, neglecting the masses of the SM

fermions, involve couplings of O(v2/f2). As each diagram contains at least two such

vertices, if any, they are suppressed by a factor of O(v4/f4) [26].

C. Loop integrals

Consider the generic one-loop diagram with N legs in figure 9, where

k1 = p1, k2 = p1 + p2, . . . kN−1 =
N−1∑

i=1

pi. (C.1)

This diagram involves integrals of the type

i

16π2
TN

µ1...µP
≡ µ4−D

∫
dDq

(2π)D
qµ1
· · · qµP

(q2−m2
0)[(q+k1)2−m2

1] · · · [(q+kN−1)2−m2
N−1]

. (C.2)

These integrals are symmetric under permutation of the Lorentz indices. The integration

is performed in dimensional regularization. The mass scale µ keeps track of the correct

dimension of the integral in D = 4 − ǫ spacetime dimensions. P ≤ N is the number of

q’s in the numerator and determines the tensor structure of the integral (scalar for P = 0,

vector for P = 1, etc.) The notation is A for T 1, B for T 2, etc. and the scalar integrals are

A0, B0, etc. The tensor integrals can be decomposed into a linear combination of Lorentz

covariant tensors constructed from gµν and a linearly independent set of the momenta [47].

The choice of the basis is not unique. Here we choose gµν and the momenta ki, which are

sums of the external momenta pi [22]. In this basis, the tensor-coefficient functions are
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Figure 10: Generic one-loop diagram with two legs.

totally symmetric in their indices. For this work, we need the following decompositions:

Bµ = k1µB1 , (C.3)

Cµ = k1µC1 + k2µC2 , (C.4)

Cµν = gµνC00 +

2∑

i,j=1

kiµkjνCij , (C.5)

Dµ =

3∑

i=1

kiµDi , (C.6)

Dµν = gµνD00 +

3∑

i,j=1

kiµkjνDij . (C.7)

These functions have been calculated for the argument configuration required by the

processes under study, obtaining the following results.

C.1 Two-point functions

Consider now the diagram with two legs in figure 10:

i

16π2
{B0, B

µ} (args) = µ4−D

∫
dDq

(2π)D
{1, qµ}(

q2 −m2
0

) [
(q + p)2 −m2

1

] , (C.8)

where k1 = p. The corresponding tensor coefficients are functions of the invariant quantities

(args) = (p2,m2
0,m

2
1). The functions B ≡ B(0;M2

1 ,M
2
2 ) and B ≡ B(0;M2

2 ,M
2
1 ) read

B0 = B0 = ∆ǫ + 1−
M2

1 ln
M2

1

µ2
−M2

2 ln
M2

2

µ2

M2
1 −M2

2

, (C.9)

B1 = −∆ǫ

2
+

4M2
1M

2
2 − 3M4

1 −M4
2 + 2M4

1 ln
M2

1

µ2
+ 2M2

2 (M2
2 − 2M2

1 ) ln
M2

2

µ2

4(M2
1 −M2

2 )2

= −B0 −B1 , (C.10)

with ∆ǫ ≡
2

ǫ
− γ + ln 4π. These functions are ultraviolet divergent in D = 4 dimensions.
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Figure 11: Generic one-loop diagram with three legs.

C.2 Three-point functions

Consider now the diagram with three legs in figure 11:

i

16π2
{C0, C

µ, Cµν} (args) =

µ4−D

∫
dDq

(2π)D
{1, qµ, qµqν}(

q2 −m2
0

) [
(q + p1)2 −m2

1

] [
(q + p2)2 −m2

2

] , (C.11)

where we have chosen the extenal momenta so that k1 = p1, k2 = p2. The corresponding

tensor coefficients depend on the invariant quantities (args) = (p2
1, Q

2, p2
2;m

2
0,m

2
1,m

2
2), with

Q2 ≡ (p2 − p1)
2. The functions C ≡ C(0, Q2, 0;M2

1 ,M
2
2 ,M

2
2 ) with x ≡M2

2 /M
2
1 read

C0 =
1

M2
1

[
1− x+ lnx

(1− x)2

+
Q2

M2
1

−2− 3x+ 6x2 − x3 − 6x ln x

12x(1 − x)4
]

+O(Q4), (C.12)

C1 = C2 =
1

M2
1

−3 + 4x− x2 − 2 lnx

4(1 − x)3 +O(Q2), (C.13)

C11 = C22 = 2 C12 =
1

M2
1

11− 18x+ 9x2 − 2x3 + 6 ln x

18(1 − x)4 +O(Q2), (C.14)

C00 = −1

2
B1 −

Q2

M2
1

11− 18x+ 9x2 − 2x3 + 6 lnx

72(1 − x)4 +O(Q4). (C.15)

Or else, defining C ≡ C(0, Q2, 0;M2
2 ,M

2
1 ,M

2
1 ),

C0 =
1

M2
1

[−1 + x− x lnx

(1− x)2

+
Q2

M2
1

−1 + 6x− 3x2 − 2x3 + 6x2 lnx

12(1 − x)4
]

+O(Q4), (C.16)

C1 = C2 =
1

M2
1

1− 4x+ 3x2 − 2x2 lnx

4(1− x)3 , (C.17)

C11 = C22 = 2 C12 =
1

M2
1

−2 + 9x− 18x2 + 11x3 − 6x3 lnx

18(1 − x)4 , (C.18)
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C00 = −1

2
B1 −

Q2

M2
1

−2 + 9x− 18x2 + 11x3 − 6x3 lnx

72(1 − x)4 +O(Q4). (C.19)

Note that C00 and C00 are ultraviolet divergent in D = 4 dimensions.

In the limit Q2 = 0 the following useful relations among two- and three-point

functions hold:

B1 + 2C00 = 0, (C.20)

−1

4
+

1

2
B1 + C00 −

x

2
M2

1C0 = 0, (C.21)

−1

2
+B1 + 6C00 − xM2

1C0 = ∆ǫ − ln
M2

1

µ2
. (C.22)

C.3 Four-point functions

The ones we need are all ultraviolet finite:

i

16π2
{D0, D

µ, Dµν} (args) =
∫

d4q

(2π)4
{1, qµ, qµqν}(

q2 −m2
0

) [
(q + k1)2 −m2

1

] [
(q + k2)2 −m2

2

] [
(q + k3)2 −m2

3

] ,(C.23)

with kj =

j∑

i=1

pi and (args) = (p2
1, p

2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)
2;m2

0,m
2
1,m

2
2,m

2
3). In the

limit of zero external momenta, only the following integrals are relevant:

i

16π2
D0 =

∫
d4q

(2π)4
1(

q2 −m2
0

) (
q2 −m2

1

) (
q2 −m2

2

) (
q2 −m2

3

) , (C.24)

i

16π2
D00 =

1

4

∫
d4q

(2π)4
q2(

q2 −m2
0

) (
q2 −m2

1

) (
q2 −m2

2

) (
q2 −m2

3

) . (C.25)

In terms of the mass ratios x = m2
1/m

2
0, y = m2

2/m
2
0, z = m2

3/m
2
0 the integrals above can

be written as:

d0(x, y, z) ≡ m4
0D0 =

[
x lnx

(1− x)(x− y)(x− z) −
y ln y

(1− y)(x− y)(y − z)

+
z ln z

(1− z)(x− z)(y − z)

]
, (C.26)

d̃0(x, y, z) ≡ 4m2
0D00 =

[
x2 lnx

(1− x)(x− y)(x− z) −
y2 ln y

(1− y)(x− y)(y − z)

+
z2 ln z

(1− z)(x− z)(y − z)

]
. (C.27)

For two equal masses (m0 = m3) we get

d0(x, y) = −
[

x lnx

(1− x)2(x− y) −
y ln y

(1− y)2(x− y) +
1

(1− x)(1− y)

]
, (C.28)

d̃0(x, y) = −
[

x2 lnx

(1− x)2(x− y) −
y2 ln y

(1− y)2(x− y) +
1

(1− x)(1− y)

]
. (C.29)
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